Note

A Note on Simultaneous Polynomial Approximation in $L_{p}[-1,1], 0<p<1$
 Z. Ditzian*
 Department of Mathematics, Unwersity of Alherta, Edmonton, Alberta, Canada ThG 2GI

Communicated by Dany Leviatan
Received April 8, 1994; accepted August 2, 1994

Abstract

In this note we will show that for $0<p<1$ simultaneous polynomial approximation is not possible. 1995 Academic Press. Inc.

While I believe that the statement of the abstract is evident from the pathological behaviour of derivatives in $L_{p}, 0<p<1$, numerous questions by others led me to understand the need for the following precise statement and proof.

Theorem 1. For $0<p<1$ we cannot have $P_{n}=P_{n}(f) \in \Pi_{n}$ such that

$$
\begin{equation*}
\left\|f-P_{n}\right\|_{p} \leqslant C \omega^{2}(f, 1 / n)_{p} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f^{\prime}-P_{n}^{\prime}\right\|_{p} \leqslant C_{1} \omega\left(f^{\prime}, 1 / n\right)_{p} \tag{2}
\end{equation*}
$$

simultaneously with constants C, C_{1} independent of n and $f \in$ A.C. $[-1,1]$.
We recall that $\omega(g, t)_{p}=\sup _{||n| \leqslant t}\left(\mathbb{i} \mid g(\cdot+(h / 2))-g(\cdot-(h / 2)) \|_{t_{p}[} \quad 1+h / 2.1 \quad h / 2\right]$, $\omega^{2}(g, t)_{p}=\sup _{|l| \leqslant 1}\left(\|g(\cdot+h)-2 g(\cdot)+g(\cdot-h)\|_{\left.L_{p} \mid-1+h .1-h\right]}\right)$, and that $\|g\|_{p}=\|g\|_{L_{r p}[-1,1]}$ where $\|g\|_{L_{p}[a, h]}=\left(\int_{a}^{\rho}|g|^{p}\right)^{1 / p}$.

Corollary 2. Theorem 1 is valid if we replace (1) and (2) by

$$
\begin{equation*}
\left\|f-P_{n}\right\|_{p} \leqslant C \omega_{\varphi}^{2}(f, 1 / n)_{p} \tag{1'}
\end{equation*}
$$

* Supported by NSERC Grant A4816 of Canada.
and

$$
\left\|f^{\prime}-P_{n}^{\prime}\right\|_{p} \leqslant C \omega_{\varphi}\left(f^{\prime}, 1 / n\right)_{p}
$$

where $\varphi^{2}(x)=1-x^{2}$ and $\omega_{\varphi}^{r}(f, t)$ is defined in $[1]$.
The corollary follows from the theorem as

$$
\omega_{\varphi}^{2}(f, t)_{p} \leqslant C \omega^{2}(f, t)_{p}, \quad \text { and } \quad \omega_{\varphi}\left(f^{\prime}, t\right)_{p} \leqslant C \omega\left(f^{\prime}, t\right)_{p}
$$

(see for instance [2]).
Proof. Given p, C, and C_{1}, we construct f (that depends on n), which will cause a contradiction. Let $f(x)$ be given by

$$
f(x)= \begin{cases}\frac{k+1}{n^{2}}, & \frac{k}{n^{2}}+\frac{1}{n^{3}} \leqslant x \leqslant \frac{k+1}{n^{2}}, \\ \frac{k}{n^{2}}+n\left(x-\frac{k}{n^{2}}\right), & \frac{k}{n^{2}} \leqslant x \leqslant \frac{k}{n^{2}}+\frac{1}{n^{3}},\end{cases}
$$

for some $n(n \geqslant 2)$. Obviously,

$$
f^{\prime}(x)= \begin{cases}0, & \frac{k}{n^{2}}+\frac{1}{n^{3}}<x<\frac{k+1}{n^{3}} \\ n, & \frac{k}{n^{2}}<x<\frac{k}{n^{2}}+\frac{1}{n^{3}}\end{cases}
$$

We now have

$$
\omega^{2}(f, 1 / n)_{p}^{p}=\omega^{2}(f-x, 1 / n)_{p}^{p} \leqslant 4\|f-x\|_{p}^{p} \leqslant 4 \cdot 2 \frac{1}{n^{2 p}}=8 \frac{1}{n^{2 p}}
$$

and

$$
\omega\left(f^{\prime}, 1 / n\right)_{p}^{p} \leqslant 2\left\|f^{\prime}\right\|_{p}^{p}=2 \frac{2 n^{2}}{n^{3}} n^{p}=4 n^{n-1}
$$

Using now

$$
\left\|f-P_{n}\right\|_{p} \leqslant C 8^{1 / p} n^{-2} \quad \text { and } \quad\left\|f^{\prime}-P_{n}^{\prime}\right\|_{p} \leqslant C_{1} 4^{1 / p} n^{1-1 / p}
$$

in conjuction with

$$
\|f-x\|_{p} \leqslant 2^{1 / p_{n}-2} \quad \text { and } \quad\left\|f^{\prime}-0\right\|_{p} \leqslant 2^{1 / p_{n} 1-1 / p}
$$

we have

$$
\left\|P_{n}-x\right\|_{p} \leqslant C_{2} n^{-2} \quad \text { and } \quad\left\|P_{n}^{\prime}-0\right\|_{p} \leqslant C_{3} n^{1-1 / p}
$$

Using the Markov-Bernstein theorem (see [3, Theorem 5]),

$$
\left\|P_{n}-x\right\|_{p} \leqslant C_{2} n^{-2}
$$

implies

$$
\psi \varphi\left(P_{n}^{\prime}-1\right) \|_{n} \leqslant C_{4} n^{-1} \quad \text { where } \quad \varphi^{2}=1-x^{2}
$$

Hence

$$
\left\{\int_{-1 / 2}^{1 / 2}\left|P_{n}^{\prime}(x)-1\right|^{p} d x\right\}^{1 / p} \leqslant \sqrt{\frac{4}{3}} C_{4} n \cdot 1
$$

and

$$
\left\{\int_{-1 / 2}^{1 / 2}\left|P_{n}^{\prime}(x)\right|^{\prime \prime} d x\right\}^{1 / p} \leqslant C_{3} n^{1-1 / p}
$$

This implies

$$
1=\int_{-1 / 2}^{1 / 2} 1 d x \leqslant C\left(n^{-p}+n^{p-1}\right)^{1 / p}=o(1), \quad n \rightarrow \infty
$$

which is a contradiction.
We note that (1) (or (1')) and

$$
\left\|f^{\prime}-Q_{n}\right\|_{p} \leqslant C_{1} \omega\left(f^{\prime}, 1 / n\right)_{p}
$$

can be proved, but not with $Q_{n}=P_{n}^{\prime}$.

References

1. Z. Ditzian and V. Totik, "Moduli of Smoothness," Springer-Verlag, Berlin/New York. 1987.
2. Z. Ditzian. V. H. Hristov, and K. G. Ivanov, Moduli of smoothness and K-functionals in $L_{p}, 0<p<1$. Constr. Approx. 11 (1995), 67-83.
3. P. Neval, Bernstein inequality in L^{p} for $0<p<1, J$. Approx. Theory 27 (1979), 239-243.
